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Abstract

Given an integer q ≥ 2, a q-normal number (or a normal number) is a real
number whose q-ary expansion is such that any preassigned sequence of length
k ≥ 1, of base q digits from this expansion, occurs at the expected frequency,
namely 1/qk. Even though there are no standard methods to establish if a given
number is normal or not, it is known since 1909 that almost all real numbers
are normal in every base q. This is one of the many reasons why the study
of normal numbers has fascinated mathematicians for the past century. We
present here a brief survey of some of the important results concerning normal
numbers.

1 Introduction

Flip a coin. If you obtain heads, write 0; if you obtain tails, write 1. Keep flipping the
coin, writing 0’s and 1’s depending on the outcome. After 100 times, count the number
of 0’s and 1’s: you will most likely count approximately 50 of each. Then, count how
many times you obtained two consecutive 0’s: it will most likely be approximately
25 times, since the possible outcomes of two consecutive flips are 00, 01, 10 and 11,
and the probability that any such particular outcome occurs is 1/4. Similarly, if you
keep flipping the coin many times, the probability that a given sequence of length k
occurs will be around 1/2k; that’s what you expect will happen: it would be perfectly
normal ! This is why we say that the sequence of 0’s and 1’s obtained by flipping
a coin creates a random sequence, that is, a binary normal sequence. This is why
if a1, a2, a3, . . . is the infinite sequence of 0’s and 1’s obtained by flipping a coin (for
ever!), we say that the expression 0.a1a2a3 . . . represents a normal number.

Humans have always been interested in creating random numbers. In fact, ran-
dom number generators have applications in gambling, lotteries, computer simulation,
cryptography, completely randomized design, and many other areas where producing
an unpredictable result needs to be achieved. Normal numbers have their practical
use in that they provide an infinite source of pseudorandom numbers. However, the
real interest for the study of normal numbers lies in the fact tha they are extremely
difficult to identify and that they are very mysterious in many other aspects.
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2 Basic definitions

Given an integer q ≥ 2, a q-normal number (or a normal number) is a real number
whose q-ary expansion is such that any preassigned sequence of length k ≥ 1, of
base q digits from this expansion, occurs at the expected frequency, namely 1/qk.
Clearly, rational numbers cannot be normal since only a particular sequence of digits
is repeated infinitely often.

Equivalently, given a positive irrational number η whose expansion is

η = bηc+ 0.a1a2a3 . . . = bηc+
∞∑
j=1

aj
qj
, with each aj ∈ {0, 1, . . . , q − 1},

where bηc stands for the integer part of η, we say that η is a q-normal number if
the sequence {qmη}, m = 1, 2, . . . (here {y} stands for the fractional part of y), is
uniformly distributed in the interval [0, 1).

Both definitions are equivalent, because the sequence {qmη}, m = 1, 2, . . ., is
uniformly distributed in [0, 1) if and only if for every integer k ≥ 1 and b1 . . . bk ∈
{0, 1, . . . , q − 1}k, we have

lim
N→∞

1

N
#{j ≤ N : aj+1 . . . aj+k = b1 . . . bk} =

1

qk
.

A real number is said to be simply normal in base q if each digit d ∈ {0, 1, . . . , q−1}
occurs with frequency 1/q. Of course, a number can be simply normal without being
a normal number (such is the case of the binary number 0.1010101010101 . . .).

A real number is said to be absolutely normal if it is normal in each base q ≥ 2.

Normal numbers are mysterious for many reasons. For instance, the constant

π = 3.1415926535897932384626433832795028841971693993751 . . .

has not yet been proved to be a normal number, although it is widely believed that
it is. Similarly, the frequently used

Euler constant e = 2.7182818284590452353602874713526624977572470937000 . . .√
2 = 1.4142135623730950488016887242096980785696718753769 . . .

log 2 = 0.69314718055994530941723212145817656807550013436026 . . .

Apery number
∞∑
n=1

1

n3
= 1.2020569031595942853997381615114499907649862923405 . . .

Golden number
1 +
√

5

2
= 1.6180339887498948482045868343656381177203091798058 . . .
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have not yet been proven to be normal numbers, although numerical evidence seems
to indicate that they are. What is even more disturbing is the fact that none of the
above numbers has been shown to be simply normal. For instance, it is possible that
venturing along the decimals of π, from some point on, one could not any longer find
the digit 0. Even though no one believes that could be the case, we can’t disprove it.

On the other hand, it is widely believed that every irrational algebraic number
is normal. Nevertheless, no algebraic irrational number has yet been proved to be
normal (in any base).

Despite our inability to prove that any member of this large family of numbers is
normal, Émile Borel [6] showed in 1909 that almost all real numbers (with respect to
the Lebesgue measure) are absolutely normal.

3 A story line

Here is a story line of some of the key results obtained concerning normal numbers.

• 1909: Borel [6] introduces the concept of normal number and proves that almost
all real numbers are absolutely normal.

• 1917: Sierpiński [23] provides an alternative proof that almost all real numbers
are normal. It is an existence theorem, that is Sierpiński does not point out to
any particular normal numbers. Here is the general idea of Sierpiński’s proof.
For each number ε ∈ (0, 1], he first constructs a set ∆(ε) which is the union of
countably many open intervals with rational endpoints, namely

∆(ε) :=
∞⋃
q=2

∞⋃
m=1

∞⋃
n=nm,q(ε)

q−1⋃
p=0

∆q,m,n,p ,

where ∆q,m,n,p is the set of all open intervals of the form(
b1
q

+
b2
q2

+ · · ·+ bn
qn
− 1

qn
,
b1
q

+
b2
q2

+ · · ·+ bn
qn

+
2

qn

)
such that ∣∣∣∣cp(b1, b2, . . . , bn)

n
− 1

q

∣∣∣∣ ≥ 1

m
,

where each bi ∈ {0, 1, . . . , q − 1} and where cp(b1, b2, . . . , bn) represents the
number of times that the digit p appears amongst the digits b1, b2, . . . , bn. The
idea is that ∆q,m,n,p contains all the numbers that are not normal in base q.
He then proves that every positive real number < 1 which is external to ∆(ε)
is absolutely normal. Finally, he shows that µ(∆(ε)) < ε for every ε ∈ (0, 1],
that is that the Lebesgue measure of the set ∆(ε) tends to 0 with ε, thereby
establishing that almost all numbers are normal.
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• 1933: Champernowne [9], an undergraduate student, proves that the number

C10 = 0.123456789101112131415161718192021 . . . ,

made up from the concatenation of the positive integers, is normal in base 10.
Observe that, by concatenating the sequence of integers written in any base
q ≥ 2, one can show that it provides a q-normal number.

• 1946: Copeland and Erdős [10] prove that the number 0.23571113171923293137 . . . ,
obtained by the concatenation of the prime numbers, is normal in base 10. Ob-
serve that the same result holds by concatenating the sequence of prime numbers
written in any base q ≥ 2. More generally, they prove that if a1, a2, a3, . . . is
an increasing sequence of positive integers (expressed in base q) such that, for
each positive θ < 1, #{ai ≤ x} > xθ provided x ≥ x0(θ), then 0.a1a2a3 . . . is a
q-normal number.

Since π(x) >
x

log x
for all x ≥ 11 (here π(x) stands for the number of primes

not exceeding x), then as a particular case we get that 0.235711131719 . . . is
indeed normal in base 10.

As another application of the general Copeland and Erdős result, we have that
since each prime p ≡ 1 (mod 4) can be written as p = r2 + s2 with r, s ∈ N,
and since #{p ≤ x : p ≡ 1 (mod 4)} > cx/ log x for all c < 1

2
provided x is

large enough, it follows that #{ni ≤ x : ni = r2 + s2} > cx/ log x for large x,
thus implying that the number 0.n1n2n3 . . . = 0.5131729 . . . is normal.

• 1946: Copeland and Erdős [10] also conjecture that if f(x) is any non con-
stant polynomial whose values at x = 1, 2, 3, . . . are positive integers, then
0.f(1)f(2)f(3) . . . is a normal number in base 10.

• 1952: Davenport and Erdős [11] prove this conjecture.

• 1956: Cassels [8] comes up with a large family of simply normal numbers by
considering the function f : [0, 1]→ R defined by

f(x) =
∞∑
j=1

xj
3j
,

where x1, x2, . . . denote the binary digits of x. Then, one can easily establish
that for almost all x ∈ [0, 1], f(x) is simply normal with respect to every base
q ≥ 2 which is not a power of 3.

• 1992: Nakai and Shiokawa [21] prove that if f ∈ R[X] is such that f(x) > 0 for
x > 0, then the real number 0.bf(1)cbf(2)cbf(3)c . . . , where bf(n)c stands for
the integer part of f(n) expressed in base q ≥ 2, is normal in base q. They also
show that the same result holds if

f(x) = α0x
β0 + α1x

β1 + · · ·+ αdx
βd ,
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where the αi’s and βi’s are real numbers with β0 > β1 > · · · > βd ≥ 0 and
f(x) > 0 for x > 0.

• 1997: Nakai and Shiokawa [22] prove that if f ∈ Z[X] is any nonconstant polyno-
mial such that f(x) > 0 for x > 0, then the number 0.f(2)f(3)f(5)f(7) . . . f(p) . . .
is normal in base 10.

• 2008: Madritsch, Thuswaldner and Tichy [19] extend the results of Nakai and
Shiokawa by showing that, if f is an entire function of logarithmic order, then
the numbers

0.bf(1)cqbf(2)cqbf(3)cqbf(4)cq . . . and 0.bf(2)cqbf(3)cqbf(5)cqbf(7)cq . . . . . . ,

where bf(n)cq stands for the base q expansion of the integer part of f(n), are
normal.

4 Series representing normal numbers

In 1971, Stoneham considered constants represented by convergent series as possible
candidates for normality.

As we mentioned in Section 1, no one has been able to show that log 2 =
∞∑
n=1

1

n2n

is a normal number. Nevertheless, Stoneham [24] was able to show that the number

α2,3 :=
∞∑

n=3k>1

1

n2n
=
∞∑
k=1

1

3k23k

is normal in base 2. More generally, observe that log
b

b− 1
=
∞∑
n=1

1

nbn
. In 2002,

Bailey and Crandall [4] proved that, if b, c ≥ 2 are coprime integers, then the number

αb,c :=
∑

n=ck>1

1

nbn
=
∞∑
k=1

1

ckbck
is normal in base b. They even showed that if r =

0.r1r2 . . . ∈ [0, 1), then α2,3(r) :=
∞∑
n=1

1

3n23n+rn
is a normal number in base 2, thereby

providing an uncountable class of normal numbers in base 2.
Is α2,3 normal in bases other than 2 ? Not always! In fact, in 2006, Bailey and

Borwein [1] proved that α2,3 is not a 6-normal number. Their idea was based on the
fact that since the expression

63mα2,3 mod 1 ≈ (3/4)3
m

3m+1

(Here x = θ mod 1 means that θ = x − bxc) is very small for large m, this causes
the number α2,3, in base 6, to have long stretches of 0’s beginning at position 3m + 1,
and as we know this is not acceptable for a normal number!
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5 Equidistribution

A sequence of positive numbers x0, x1, x2, . . ., each smaller than 1, is said to be equidis-
tributed if, for any 0 ≤ c < d < 1,

lim
N→∞

1

N
#{0 ≤ j < N : xj ∈ [c, d)} = d− c.

In 2001, Bailey and Crandall [3] considered the sequence x0, x1, . . . defined by
x0 = 1 and, for each n ≥ 1, by

xn =

(
2xn−1 +

1

n

)
mod 1.

They showed that if one could prove that this sequence is equidistributed in [0, 1],
then it would imply that log 2 is a binary normal number.

Similarly, consider the sequence y0, y1, . . . defined by y0 = 1 and, for each n ≥ 1,
by

yn =

(
16yn−1 +

120n2 − 89n+ 16

512n4 − 1024n3 + 712n2 − 206n+ 21

)
mod 1.

They showed that if one could prove that this sequence is equidistributed in [0, 1],
then it would imply that π is a 16-normal number (and hence a 2-normal number as
well).

These results raise a natural question: Is it easier to prove the equidistribution
of the sequence (xn)n≥1 or the normality of log 2 ? What about the sequence (yn)n≥1
and its corresponding number π ? Nobody knows!

6 Abnormal numbers

Surely, if we have so much difficulty finding normal numbers, it should be easy to
find many numbers which are not normal. It turns out that, except for the rational
numbers, this task is not so easy!

A number is said to be abnormal in base q if it is not normal in base q. For
instance, the binary number

∞∑
n=1

n

2n2 = 0.10100001100001000000001010000000011000000000001110 . . .

is clearly abnormal since one can easily show that almost all of its digits in base 2 are
zeros.

A less obvious example of a binary abnormal number is the amazing Devil’s stair-

case number, namely the number f(x) :=
∞∑
n=1

bnxc
2n

with x ∈ [0, 1]. Here is the graph

of f(x):
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This function has amazing properties. Bailey and Crandall [4] studied this function
and proved that, for x ∈ (0, 1),

• f is monotone increasing,

• f is continuous at every irrational x, but discontinuous at every rational x,

• f(x) ∈ R \Q if and only if x ∈ R \Q,

• if x is irrational, then f(x) is transcendental,

• the range of f([0, 1]) is a set of measure zero,

• if x = a/b with a, b ∈ N and a/b < 1, then f(x) =
1

2b − 1
+
∞∑
m=1

1

2bm/xc
, while if

x is irrational, then f(x) =
∞∑
m=1

1

2bm/xc
.

But then the most interesting property of f(x) shown by Bailey and Crandall is that
it is never 2-normal.

7 Absolutely abnormal numbers

A number is said to be absolutely abnormal if it is not normal in every base q ≥
2. In May 2000, during a survey talk by Glynn Harman, Andrew Granville asked
about a specific absolutely abnormal number. In response, Carl Pomerance suggested

considering the Liouville number ` :=
∞∑
n=1

(n!)−n!. Recall that a number β is said to

be a Liouville number if, given any large integer m, there exists a rational p/q such
that

0 <

∣∣∣∣β − p

q

∣∣∣∣ < 1

qm
.
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Observe that it is known that every Liouville number is transcendental. As of now,
no one has proved that ` is absolutely abnormal. Intrigued by Granville’s question,
Martin [20] considered the very fast growing sequence

d2 = 22, d3 = 32, d4 = 43, d5 = 516, d6 = 630 517 578 125, . . .

with the recursive rule
dj = jdj−1/(j−1) (j ≥ 3).

Then he proved that the number

∞∏
j=2

(
1− 1

dj

)
= 0.6562499999956991 999 . . . 999︸ ︷︷ ︸

23,747,291,559 9’s

85284042016 . . .

is a Liouville number and in fact an absolutely abnormal normal.
More generally, given any sequence of positive integers n2, n3, . . ., set d2 = 2n2 and

dj = jnjdj−1/(j−1) (j ≥ 3)

and consider the number

α :=
∞∏
j=2

(
1− 1

dj

)
.

Martin proved that α is an absolutely abnormal number, thus providing an uncount-
able family of absolutely abnormal numbers.

8 Using the prime factorization to construct nor-

mal numbers

As of 2011, all known normal numbers were essentially of one of the types described
in Sections 3 and 4. In 2011, a totally different approach was initiated. It is based on
the idea that the prime factorization of integers is locally chaotic but globally very
regular. Here is how it goes.

Let q ≥ 2 be a fixed integer and let ℘ stand for the set of all primes. Let
℘0, ℘1, . . . , ℘q−1 be disjoint sets of primes such that

℘ = R∪ ℘0 ∪ ℘1 ∪ · · · ∪ ℘q−1,

where R is a given finite (perhaps empty) set of primes. We call R, ℘0, ℘1, . . . , ℘q−1
a disjoint classification of primes.

A simple example of a disjoint classification of primes is obtained by letting q = 2
and setting R = {2}, ℘0 = {p ∈ ℘ : p ≡ 1 (mod 4)} and ℘1 = {p ∈ ℘ : p ≡ 3
(mod 4)}.

Now, for each integer q ≥ 2, let Aq := {0, 1, . . . , q−1}. Given an integer t ≥ 1, we
say that an expression of the form i1i2 . . . it, where each ij ∈ Aq, is a word of length
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t. The symbol Λ will denote the empty word. Now, given a disjoint classification of
primes R, ℘0, ℘1, . . . , ℘q−1, let the function H : ℘→ Aq be defined by

H(p) =

{
j if p ∈ ℘j for some j ∈ Aq,
Λ if p ∈ R.

Let A∗q be the set of finite words over Aq and consider the function T : N → A∗q
defined by

T (n) = T (pa11 · · · parr ) = H(p1) . . . H(pr),

where we omit H(pi) = Λ if pi ∈ R. For convenience, we set T (1) = Λ. Finally, given
a set of integers S, let π(S) := #{p ∈ ℘ ∩ S}. In 2011, De Koninck and Kátai [13]
proved the following result.

Theorem 1. Let q ≥ 2 be an integer and let R, ℘0, ℘1, . . . , ℘q−1 be a disjoint classi-
fication of primes. Assume that, for a certain constant c ≥ 5,

π([u, u+ v] ∩ ℘j) =
1

q
π([u, u+ v]) +O

(
u

logc u

)
uniformly for 2 ≤ v ≤ u, j = 0, 1, . . . , q − 1, as u → ∞. Moreover, let T be defined
on N by

T (n) = T (pa11 · · · parr ) = H(p1) . . . H(pr),

where

H(p) =

{
j if p ∈ ℘j for some j ∈ Aq,
Λ if p ∈ R.

Then, ξ = 0.T (1)T (2)T (3)T (4) . . . is a q-normal number.

Example: Let q = 2, R = {2}, ℘0 = {p : p ≡ 1 (mod 4)} and ℘1 = {p : p ≡ 3
(mod 4)}. In particular, {T (1), T (2), . . . , T (15)} = {Λ,Λ, 1,Λ, 0, 1, 1,Λ, 1, 0, 1, 1, 0, 1, 10}.
Then, it follows from Theorem 1 that ξ = 0.T (1)T (2)T (3)T (4) . . . = 0.101110110110 . . .
is a binary normal number.

Although we will not give here a proof of Theorem 1, let us at least mention that a
key element of its proof is a 1995 result of De Koninck and Kátai [12] which we state
here as Theorem A.

Theorem A. Let R, ℘0, ℘1, . . . , ℘q−1 be a disjoint classification of primes such that

π([u, u+ v] ∩ ℘i) = δiπ([u, u+ v]) +O

(
u

(log u)c1

)
holds uniformly for 2 ≤ v ≤ u, i = 0, 1, . . . , q − 1, where c1 ≥ 5 is a constant,
δ0, δ1, . . . , δq−1 are positive constants such that

∑q−1
i=0 δi = 1. Assume that limx→∞wx =

+∞, wx = O(log log log x),
√
x ≤ Y ≤ x and 1 ≤ k ≤ c2 log log x, where c2 is an
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arbitrary constant. Let A ≤ log log x with P (A) ≤ wx. Then, as x→∞, letting ω(n)
stand for the number of distinct prime factors of n,

#{n = An1 ≤ Y : p(n1) > wx, ω(n1) = k, H(n1) = i1 . . . ik}

= (1 + o(1))δi1 · · · δik
Y

A log Y

(log log x)k−1

(k − 1)!
ϕwx

(
k − 1

log log x

)
F

(
k − 1

log log x

)
,

where

ϕw(z) :=
∏
p≤w

(
1 +

z

p

)−1
and F (z) :=

1

Γ(z + 1)

∏
p

(
1 +

z

p

)(
1− 1

p

)z
.

De Koninck and Kátai [15] also proved the following.

Theorem 2. Let q ≥ 2 be a fixed integer. Given a positive integer

n = pe11 · · · p
ek+1

k+1

(here, k can be zero), let

cj(n) :=

⌊
q log pj
log pj+1

⌋
∈ Aq (j = 1, . . . , k).

Define the arithmetic function H by

H(n) = H(pe11 · · · p
ek+1

k+1 ) =

{
c1(n) . . . ck(n) if k ≥ 1,
Λ if k ≤ 0.

Then the number ξ = 0.H(1)H(2)H(3) . . . is a q-normal number.

9 A question raised by Shparlinski

Let P (n) stand for the largest prime factor of the integer n ≥ 2. In 2010, Igor
Shparlinski asked if the number

0.P (2)P (3)P (4)P (5)P (6) . . .

is normal in base 10.
In 2011, De Koninck and Kátai [14] answered Shparlinski’s question in the affir-

mative and actually proved more, as stated in Theorem 3 below.
But first some notation. Given a positive integer n, write its q-ary expansion as

n = ε0(n) + ε1(n)q + · · ·+ εt(n)qt,

where each εi(n) ∈ Aq and εt(n) 6= 0. Then write

n = ε0(n)ε1(n) . . . εt(n).
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Theorem 3. Let F ∈ Z[x] be a polynomial with positive leading coefficient and posi-
tive degree, and such that F (x) > 0 if x > 0. Then the number

ξ = 0.F (P (2))F (P (3))F (P (4)) . . . . . .

is normal.

We only give here a sketch of the proof of Theorem 3.

Let L(n) := Lq(n) =

⌊
log n

log q

⌋
+ 1, that is, the number of digits of n in base q.

Given a word θ = i1i2 . . . it ∈ Atq, we write λ(θ) = t. Also, let νβ(θ) stand for the
number of times that the subword β occurs in the word θ. A key element of the proof
of Theorem 3 is the following 1996 result of Bassily and Kátai [5].

Let F ∈ Z[x] be a polynomial with positive leading coefficient and of
positive degree r. Let β ∈ Akq . Assume that κu is a function of u such
that κu > 1 for all u. Setting

Vβ(u) := #

{
p ∈ ℘ ∩ [u, 2u] :

∣∣∣∣νβ(F (p))− L(ur)

qk

∣∣∣∣ > κu
√
L(ur)

}
,

then, there exists a positive constant c such that

Vβ(u) ≤ cu

(log u)κ2u
.

One can easily see that from this result it follows that given β1, β2 ∈ Akq with
β1 6= β2 and setting

∆β1,β2(u) := #
{
p ∈ ℘ ∩ [u, 2u] :

∣∣∣νβ1(F (p))− νβ2(F (p))
∣∣∣ > κu

√
L(ur)

}
,

then, for some positive constant c,

(9.1) ∆β1,β2(u) ≤ cu

(log u)κ2u
.

Now, given a large number x, let Ix = [x, 2x] and set θ = F (P (n0))F (P (n1)) . . . F (P (nT )),
where n0 is the smallest integer in Ix, and nT the largest.

It is clear that the proof of Theorem 3 will be complete if we can show that, given
an arbitrary word β ∈ Akq , we have

νβ(θ)

λ(θ)
∼ 1

qk
(x→∞).

Since the number of digits of each prime p ∈ Ix is of order log x, it follows by the
definition of θ that

λ(θ) ≈ r x log x,
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which reveals the true size of λ(θ).
Letting δ be a small positive number, one can easily show that the number of

integers n ∈ Ix for which either P (n) < xδ or P (n) > x1−δ is ≤ cδx, implying that
we may write

(9.2) νβ(θ) =
∑
n∈Ix

xδ≤P (n)≤x1−δ

νβ(F (P (n))) +O(T ) +O(δx log x).

Let us now introduce the finite sequence u0, u1, . . . , uH defined by u0 = xδ and
thereafter by uj = 2uj−1 for each 1 ≤ j ≤ H, where H is the smallest positive integer

for which 2Hu0 > x1−δ, so that H =

⌊
(1− 2δ) log x

log 2

⌋
+ 1.

Now, for each prime p, let R(p) := #{n ∈ Ix : P (n) = p}. We have, in light of
(9.2) and the fact that T = O(x),

(9.3) νβ(θ) =
∑

xδ≤p≤x1−δ
νβ(F (p))R(p) +O(δx log x).

Let β1, β2 ∈ Akq with β1 6= β2. Then, using (9.3), we have

|νβ1(θ)− νβ2(θ)| ≤
∑

xδ≤p≤x1−δ

∣∣∣νβ1(F (p))− νβ2(F (p))
∣∣∣R(p) +O(δx log x)

=
H−1∑
j=0

∑
uj≤p<uj+1

∣∣∣νβ1(F (p))− νβ2(F (p))
∣∣∣R(p) +O(δx log x)

=
H−1∑
j=0

Sj(x) +O(δx log x),(9.4)

say.
Set Ψ(x, y) := #{n ≤ x : P (n) ≤ y}. Then, letting z = log x/ log y, it is well

known that

Ψ(x, y) = ρ(z)x+O

(
x

log y

)
uniformly for 2 ≤ y ≤ x,

where ρ stands for the Dickman function (see for instance Theorem 9.14 in the book
of De Koninck and Luca [18]).

We then have, as x→∞,

R(p) = Ψ

(
2x

p
, p

)
−Ψ

(
x

p
, p

)
= ρ

(
log(2x/p)

log p

)
2x

p
− ρ

(
log(x/p)

log p

)
x

p
+O

(
x

p log p

)
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= (1 + o(1))ρ

(
log x

log p
− 1

)
x

p
,

from which it follows that

(9.5) Sj(x) ≤ 2x

uj

∑
uj≤p<uj+1

∣∣∣νβ1(F (p))− νβ2(F (p))
∣∣∣ .

Set κu := log log u. We will say that p ∈ [uj, uj+1) is a good prime if∣∣∣νβ1(F (p))− νβ2(F (p))
∣∣∣ ≤ κu

√
L(ur),

and a bad prime otherwise.
Splitting the sum Sj(x) into two sums, one running on the good primes and one

running on the bad primes, it follows from (9.5) and the Bassily-Kátai result (9.1)
that

Sj(x) ≤ 2x

uj
κuj

√
L(urj)

uj
log uj

+
2x

uj

uj log uj+1

(log uj)κ2uj

= 2x ·

κuj
√
L(urj)

log uj
+

log uj+1

(log uj)κ2uj


≤ 4x

{
r log log uj√

log uj
+

1

(log log uj)2

}
.

Summing the above inequalities for j = 0, 1, . . . , H−1, we obtain that
∑H−1

j=0 Sj(x) =
o(x log x) as x→∞ and thus that, in light of (9.4), for some constant c > 0,

(9.6) |νβ1(θ)− νβ2(θ)| ≤ cδx log x+ o(x log x).

Now let ξN be the first N digits of the infinite word

F (P (2)) F (P (3)) F (P (4)) . . .

and let m be the unique integer such that

ξ̃N := F (P (2)) F (P (3)) . . . F (P (m)),

where λ(ξ̃N) ≤ N < λ(ξ̃NF (P (m+ 1))), so that λ(F (P (m+ 1))) � logm � logN ,

implying in particular that ξN and ξ̃N have the same digits except for at most the
last blogNc ones.

Let 2x = m and consider the intervals Ix, Ix/2, Ix/(22), . . . , Ix/(2L), where L =
2[log log x], that is,

Ix/2L Ix/22 Ix/2 Ix
| | · · · · · · | | | | | | 2x = m

13



and write
τj = F (P (a)) . . . F (P (b)) (j = 0, 1, . . . , L),

where a is the smallest and b the largest integer in Ix/(2j).

Moreover, let
µ = F (P (2)) . . . F (P (s)),

where s is the largest integer which is less than the smallest integer in Ix/(2L).
It is clear that

(9.7)
∣∣∣νβ1(ξ̃N)− νβ2(ξ̃N)

∣∣∣ ≤ |νβ1(µ)− νβ2(µ)|+
L∑
j=0

|νβ1(τj)− νβ2(τj)|

and that

(9.8) νβ(µ) ≤ λ(µ) ≤ x

2L
· r log x = o(x).

Applying estimate (9.6) L+ 1 times (with θ = ξ̃N) by replacing successively 2x by x,
x/2, x/22, . . . , x/2L, we obtain from (9.7) and in light of (9.8), that

(9.9)
∣∣∣νβ1(ξ̃N)− νβ2(ξ̃N)

∣∣∣ ≤ cδN + o(N) (N →∞).

Now, one can easily see that∑
γ∈Akq

νγ(θ) = λ(θ)− k + 1,

from which it follows that

qkνβ(θ)− λ(θ) =
∑
γ∈Akq

(νβ(θ)− νγ(θ)) +O(1),

implying that, setting θ = ξN and using (9.9),∣∣qkνβ(ξN)− λ(ξN)
∣∣ ≤ ∑

γ∈Akq

|νβ(ξN)− νγ(ξN)|+O(1)

≤ (cδN + o(N))qk,

from which it follows that, observing that λ(ξN) = N ,

lim sup
N→∞

∣∣∣∣νβ(ξN)

N
− 1

qk

∣∣∣∣ ≤ cδ.

Since δ > 0 can be chosen arbitrarily small, it follows that

lim sup
N→∞

νβ(ξN)

N
=

1

qk
,

thus establishing that ξ is normal.

Later, in De Koninck and Kátai [16], we showed how the concatenation of the
successive values of the smallest prime factor p(n), as n runs through the positive
integers, can also yield a normal number.
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10 Using the number of prime factors of an integer

to create normal numbers

In the previous section, we showed that the number 0.P (2)P (3)P (4) . . . is a normal
number. What if we replace the function P (n) by some other arithmetic function
f(n) ? Will we still get a normal number ? Not always. Take for instance the
function ω(n) which counts the number of distinct prime factors of n. One can easily
show that the concatenation of the successive values of ω(n), say by considering
the real number ξ := 0.ω(2)ω(3)ω(4)ω(5) . . ., where each m stands for the q-ary
expansion of the integer m, will not yield a normal number. Indeed, since the interval
I := [ee

r−1
, ee

r
], where r := blog log xc, covers most of the interval [1, x] and since∣∣∣∣ω(n)

r
− 1

∣∣∣∣ < 1

r1/4
, say, with the exception of a small number of integers n ∈ I, it

follows that ξ cannot be normal in basis q.
Recently, Vandehey [25] used another approach to yet create normal numbers

using certain small additive functions. He considered irrational numbers formed by
concatenating some of the base q digits from additive functions f(n) that closely
resemble the prime counting function Ω(n) :=

∑
pρ‖n ρ. More precisely, he used the

concatenation of the last dy log log logn
log q

e digits of each f(n) in succession and proved that

the number thus created turns out to be normal in basis q if and only if 0 < y ≤ 1/2.
In De Koninck and Kátai [17], we showed that the concatenation of the successive

values of |ω(n) − blog log nc|, as n runs through the integers n ≥ 3, yields a normal
number in any given basis q ≥ 2. Moreover, we showed that the same result holds if
we consider the concatenation of the successive values of |ω(p+ 1)−blog log(p+ 1)c|,
as p runs through the prime numbers.

11 Final remarks

In 2004, Bailey, Borwein, Crandall and Pomerance [2] proved that if x is an algebraic
number of degree d > 1, then there exists a positive constant C such that the binary
expansion of x through position n has at least Cn1/d ones, provided n is sufficiently
large. For instance, choose x =

√
2. It is algebraic of degree 2. Hence according to

this result, the first n digits of
√

2 must include at least c
√
n ones (for some positive

constant c). Of course, if we could prove that
√

2 is normal, then the first n digits
should include approximately n/2 ones. This means that we are far from the truth.

Many authors have shown a great interest for the study of normal numbers. The
recent book of Bugeaud [7] contains many other results concerning this fascinating
topic along with many open problems on normal numbers.
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